eigenvalue - significado y definición. Qué es eigenvalue
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es eigenvalue - definición

VECTORS THAT MAP TO THEIR SCALAR MULTIPLES, AND THE ASSOCIATED SCALARS
EigenVectors; EigenValue; EigenVector; Eigen Vectors; Eigenvalue; Eigenspace; Eigenvector; Characteristic value; Algebraic multiplicity; Eigenvalues; Eigen value; Characteristic root; Latent root; Proper values; Eigenvalue, eigenvector, and eigenspace; Geometric multiplicity; Latent vector; Eigenvalue (quantum mechanics); Eigen vector; Eigenline; Proper vector; Eigenmode; Principal eigenvector; Eigensystem; Eigen basis; Eigenbasis; Eigenanalysis; Right eigenvector; Left eigenvector; Eigen value problem; Eigenfrequency; Eigenvalue (Matrix); Eigenproblem; Eigenmatrix; Proper value; Eigenvector, eigenvalue and eigenspace; Eigenvector, eigenvalue, and eigenspace; Eigenvectors; Algebraic Multiplicity; Eigenvalue, eigenvector and eigenspace; Spectral properties; Eigenvectors and eigenvalues; Eigen values; Simple eigenvalue; Semisimple eigenvalue; Eigenenergy; Eigenenergies; Racine caractéristique; Draft:Eigencircle; Eigenvector-eigenvalue identity; Eigenvalue problem; Eigen-values and eigenvectors
  • [[Eigenface]]s as examples of eigenvectors
  • Matrix ''A'' acts by stretching the vector '''x''', not changing its direction, so '''x''' is an eigenvector of ''A''.
  • An extended version, showing all four quadrants]].
  • A 2×2 real and symmetric matrix representing a stretching and shearing of the plane. The eigenvectors of the matrix (red lines) are the two special directions such that every point on them will just slide on them.
  • PCA of the [[multivariate Gaussian distribution]] centered at <math>(1, 3)</math> with a standard deviation of 3 in roughly the <math>(0.878, 0.478)</math> direction and of&nbsp;1 in the orthogonal direction. The vectors shown are unit eigenvectors of the (symmetric, positive-semidefinite) [[covariance matrix]] scaled by the square root of the corresponding eigenvalue. Just as in the one-dimensional case, the square root is taken because the [[standard deviation]] is more readily visualized than the [[variance]].
  • measurement]]. The center of each figure is the [[atomic nucleus]], a [[proton]].
  • homothety]])
  • Mode shape of a tuning fork at eigenfrequency 440.09&nbsp;Hz
  • In this [[shear mapping]] the red arrow changes direction, but the blue arrow does not. The blue arrow is an eigenvector of this shear mapping because it does not change direction, and since its length is unchanged, its eigenvalue is 1.
  • alt=Rotation by 50 degrees
  • alt=Horizontal shear mapping
  • 100px
  • alt=Vertical shrink and horizontal stretch of a unit square.

eigenvalue         
¦ noun Mathematics & Physics a value of a parameter for which a differential equation has a non-zero solution (an eigenfunction) under given conditions.
eigenvalue         
<mathematics> The factor by which a linear transformation multiplies one of its eigenvectors. (1995-04-10)
Eigenvalues and eigenvectors         
In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted by \lambda, is the factor by which the eigenvector is scaled.

Wikipedia

Eigenvalues and eigenvectors

In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted by λ {\displaystyle \lambda } , is the factor by which the eigenvector is scaled.

Geometrically, an eigenvector, corresponding to a real nonzero eigenvalue, points in a direction in which it is stretched by the transformation and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed. Loosely speaking, in a multidimensional vector space, the eigenvector is not rotated.